BY2

Question		1	Answer	Mark
1.	(a)		Label parts A to E on the diagram. all correct	1
			A mouth / buccal cavity	
			B oesophagus / gullet/ esophagus	
			C stomach	
			D small intestine / duodenum / ileum	
			E large intestine / colon	
	(b)	(i)	digestion A C D	1
		(ii)	absorption D E	1
	(c)		different parts carry out different functions / provide different	1
			conditions for enzymes/different food groups digested in different	
			areas	
	(d)	(i)	lives <u>in</u> or <u>on</u> another organism NOT lives off of max	2
			obtains nourishment/ nutrients/ products of digestion from the host	
			provides no benefit / causes harm to its host	
		(ii)	region D has high concentration of products of digestion /	
			tapeworm can absorb nutrients/ nourishment from the digested food	1
	(e)		peristalsis:	1
			hooks / suckers / scolex to attach to the gut wall NOT hookers	
			digestive enzymes:	
			(thick) cuticle / secretes mucus / secretes enzyme inhibitors NOT	1
			coating/covering / waxy cuticle	
	(f)		increases chance of (species) survival / infecting a new (intermediate)	1
			host/ many eggs will not survive	

Question Total 10

Question			Answer	Mark
2.	(a)	(i)	Arthropoda	1
		(ii)	jointed legs max	2
			exoskeleton	
			fluid-filled body cavity / haemocoel/ open circulatory system	
			Segmentation/ segmented body NOT large brain	
	(b)	(i)	a group of organisms that can interbreed / breed with each other to	1
			produce fertile offspring	
		(ii)	<u>Genus</u>	1
		(iii)	DNA base sequencing / hybridisation/ sequencing analysis/ DNA	1
			electrophoresis Not DNA analysis/ analysis alone	
			genetic fingerprinting or profiling/	
			amino acid sequencing of proteins / differences in protein structure	
			(not: biochemical methods unqualified) NOT compare DNA/ genes	
		(iv)	high level of similarity shows that they are closely related / converse	1
			argument. Needs to relate to 2 a (iii)	

7

Question		Answer			
3.	(a) (i)	Transpiration/ evapotranspiration			
	(b)	Potometer NOT podometer	1		
	(c) (i)	graph:	4		
		Axes Correct and labelled. Using labels from table, axes correct. 1			
		Scale Appropriate with over half of paper used. (1)			
		Plot All correct, +/- 1 small square (1)			
		Curve/ Line Well drawn through points (1)			
	(ii)	as wind speed increased distance travelled increased;	2		
		NOT rate of transpiration	max		
		wind removed water vapour from leaf surface / removes diffusion shells / removes			
	water molecules from the leaf's microclimate/				
	increased diffusion gradient between inside and outside of leaf				
		(not: blows water away)			
	(iii)	water lost from leaves / by transpiration; max	3		
		causes tension on water molecules;			
	cohesive force between water molecules ;				
		adhesive forces between water molecules and xylem/vessel walls;			
	water molecules pulled into / up xylem/ vessel				
		NOT hydrostatic / root pressure			
	(d) (i)	Pumped/ moved out of guard cells/ no longer pumped in	1		
	(ii)	increased water potential , so water moves out	1		
	(iii)	decreased water, so decreases volume of cell/ flaccid/ cause walls to move together	1		
	(e)	Effect on rate Factor Explanation of water loss			
		increased Increase / Reduces concentration/diffusion gradient/ water			
		Humidity Decrease potential gradient between inside and outside lea	af		
		increased Increase / Greater rate of evaporation from surface of leaf	1		
		Temperature Decrease increased KE (of water molecules)			

Question		า	Answer	Mark
4.	(a)	(a) (i) Contraction of {left ventricle/ ventricular systole} causes a {surge /		3
			increase in blood pressure};	
			pressure drops when the {left ventricle relaxes/ ventricular diastole};	
			pressure in aorta does not fall to zero because of the closing of the	
			{aortic / semi-lunar valve};	
			{elastic recoil/ elasticity} of the arteries maintains blood pressure.	
		(ii)	Friction/ resistance with vessel walls / increased cross-sectional /	1
			surface area of arterioles / blood vessels distance from heart	
			increased causes progressive pressure drop/ Not reference to	
			capillaries	
	(b)	(i)	R;	2
			highest pO ₂ / oxygen level OR lowest pCO ₂ / carbon dioxide	
		(ii)	at arterial end: max	3
			hydrostatic pressure (forcing liquid out of capillaries) greater than the	
			osmotic pressure (drawing water in)	
			at venous end:	
			hydrostatic pressure has decreased;	
			water potential gradient / high osmotic pressure in capillary or osmotic	
			pressure greater than hydrostatic pressure causes an inward flow	
			ORA;	
			not all water (re)absorbed into capillary, reject all references to blood	
		(iii)	Drains/ removes (excess) tissue fluid from the tissues / prevents	1
			build up of tissue fluid / return (excess) tissue fluid to blood via	
			lymphatic system NOT ref to waste products alone	
			Question Total	10

Question Answer Mark

5. (a) 1 mark each correct ROW

4

2

Statement	Fish	Amphibia	Reptiles	Birds	Mammals
1. Fertilisation is always internal			✓	✓	✓
2. Eggs are laid in an aquatic	✓	✓			
environment					
3. The embryo is surrounded by a			✓	√	1
membrane called the amnion					
4. Both fertilisation and embryo					√
development are always internal					

(b) (i) lowest supply of {nutrients / food}; max 2
embryo cannot complete development inside egg/ {poorly/less}
developed at hatching;
embryo unable to care for itself after hatching / parents have to {feed
/ keep warm} (due to lack of feathers)/ cannot feed itself;

- (ii) more {time / energy/ resources} used to care for offspring/ more
 offspring would need too much {time / energy/ resources} to look
 after;
 increased chance of survival of offspring/ less competition between
 offspring;
- (c) (i) <u>incomplete</u> metamorphosis NOT stage metamorphosis 1
 - (ii) nymphs / instars 1
 - (iii) nymphs {go through a series of moults/ shed exoskeleton several times} (to become the adult); NOT skin/ outer layer exoskeleton is {hard/ limits growth}; exoskeleton can only {be stretched/ grow} when newly formed/ {length/ size} can only increase following a moult;

rapid increase in length before exoskeleton hardens

(d) Tracheae/ tracheoles; NOT tracheaspiracles1

Qu	estion	Answe	er	Mark
6.	(a)	Descri	be the uptake of water by plants from the soil into the xylem	7
		Explair	n the role of ions in this process.	3
		Α	water absorbed by the root hair cells	
		В	(water can be) {absorbed into / moves through} cell walls	
		С	moves (across cortex) via apoplast route	
		D	(can also move) across plasma membrane / into cytoplasm	
			by osmosis	
		Е	(water) moves from the cytoplasm of one cell to the next via	
			plasmodesmata	
		F	(called the) symplast route	
		G	(water can also) move through cytoplasm and vacuoles via	
			vacuolar route	
		Н	Casparian strip / band in walls of endodermal cells	
		1	made of suberin / waterproof	
		J	stops apoplast route / water forced into symplast route Max	7
		K	ions absorbed into root hair cells by active transport	
		L	lons lowering water potential in root hair cells	
		M	at the endodermis ions absorbed into cytoplasm by active	
			transport/ uptake	
		N	ions travel (through pericycle) into xylem	
		0	lowers water potential in xylem	
		Р	ref to lower water potential in root hair cells or xylem	
			increasing osmotic gradient between soil (solution) and cell	
			contents / creates osmotic gradient across root Max	3

(b)	Explain why large, multi-cellular organisms have evolved specialised 3 surfaces for gaseous exchange.							
		ribe and explain how terrestrial mammals are adapted for	7					
	gaseo	ous exchange in air.						
	Α	metabolic needs (approx) proportional to volume/ larger						
		organisms need more oxygen						
	В	Larger organisms external surface insufficient for gas						
		exchange						
	С	diffusion (of respiratory gases) proportional to surface area						
	D	surface area : volume ratio is too small/ larger animals have a						
		smaller SA:vol ratio (to supply metabolic needs)						
	Е	diffusion distances too large						
	F	not enough O_2 can diffuse / O_2 cannot diffuse fast enough (to						
		the cells furthest from surface) (to meet metabolic needs)						
	G	{gas exchange surface folded/ large number of alveoli} - to increase surface area						
	Н	internal lungs						
	1	(to) reduce water / heat loss NOT prevent						
	J	gaseous exchange takes place in the alveoli						
	K	thin walls - reduce diffusion distance						
	L	(layer of) moisture – for gases to dissolve in						
	М	blood supply/ capillaries – {maintain concentration / diffusion						
		gradient (between alveolar air and blood)/ transport absorbed						
		gases}						
	N	haemoglobin (in erythrocytes) – transport of oxygen						
	0	ventilation mechanism/ description of ventilation mechanism						
	Р	(to) replace stale air with fresh air / enable continuous max	7					
		exchange of gases						

10